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Abstract

Consider an observed stochastic process consisting of a signal with

additive noise. Assume that the signal has finite energy and that the signal

- and noise are independent. In this paper we show, that under the above assump-

tions the innovations and observations a-algebra are equal thereby proving a

long-standing conjecture of Kailath.
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Introduction.

Let (S1,FP) be a complete probability space, F = (F t), 0 < t < 1, a

non-decreasing family of sub--algebras and W= (Wtft, 0 < t < 1, a Wiener

process. With a signal process, 8 = (8tF t) and

t
y(1) t f 0 ds + Wt

0

as observations, the innovations problem is to determine whether y = (yt,Ft) is

adapted to the innovations process, (vF). This process, whenever it exists

(see, for example, [1]), is a Wiener process defined by the equation

(2) vt = Yt- ' sds

where k = E($tlYs, 0 < s < t). The innovations problem, first posed by Kailath

in 1967 and subsequently considered by Frost in his thesis [2] can be posed In

probabilistic terms; namely, are the a-algebras generated by these processes the

same modulo null sets; i.e. is

{Y sa < t} = va(s, s< t} (mod P)?

In this paper, we show that in the form conjectured by Kailath [3] this problem

has a positive solution. Our assumptions are that

(a) Signal and noise processes are independent

F and (b) E(o ads) <

Our results generalise all known results on the innovations problem

([4], (3]). In (] the signal process is assumed to be uniformly bounded. The

*proof given in [2] is incorrect (see [3]). This problem has also been considered

by Benes [5] and Kallianpur [6] under slightly weaker hypotheses than ours. Their
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proofs however appear to be incorrect. We have been informed that results

similar to ours have been independently obtained by J.M.C. Clark and M,P. Ershov.

The problem considered here is a subclass of the more general innovations

problem for stochastic differential equations ([7 1 Page 260). In this more

general form, the innovations problem does not have (in general) a positive solu-

tion. A counter-example was given by Cirelson ([ 7], Page 150). In Cirelson's

example no "filtering" takes place and thus it cannot be considered to be a

counter-example to the innovations problem for non-linear filtering. Cirelson's

example however can be modified to obtain examples where filtering does occur

(cf. Bene' [8]). The proof presented in this paper utilizes the independence

of the signal and noise processes in an essential way. Nevertheless we feel that

the assumption of independence can be removed for a wide class of signal processes.

1. The Innovations Result under (a). (b).

Our proof consists of two parts: deriving a Jointly measurable functional,

Y(s,x),
Y: [0,1] x C[0,l1 4 R

with the property that

y(s, (M)) = 0() X X P -a.s.

(X denotes Lebesgue measure on [0,11), and then showing that any weak solution

of the stochastic differential equation

(4) dtt = y(t,t)dt + dV t

is pathwise unique in the sense of Yamada and Watanabe [9 1. It is a consequence

)l of their work that (4) has a strong solution (in the sense of Ito) i.e. the obser-

vations are a functional of the innovations.

Under (a), (b), we may apply the results of Kallianpur and Striebel [10] to

show that for 0 < t < 1,
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(5) 0 (M A- h t t)exp( fo a s("Mi~y (w) J f-a 0(W^)ds)dP(Wi) W- a.s.

f t A t
Sexp(f 0) O5(W)d5(W)_-f 0 02(W)ds)dP(w)

Replacing ys by xs for x e C [0,11, we arrive at y(t,x). The Joint measurability

of Y(t,x) rests upon the measurability in (t,w,x) of the functional, (or

stochastic integral),

f as 8(6)dx - < DO (c),x >t

which represents a Gaussian random variable with respect to Wiener measure

on C[O,t] whenever O(W) is in L2 [0,tJ, for t < 1. The operator, D, is unitary

from L2 [0,1] onto C', the Hilbert Space of continuous function with square in-

tegrable derivatives, and

Df(s) = fof(r)dr.

(Further discussion is given by Kuo Ill],)

Our hypotheses (a), (b) guarantee that the innovations{Vtl can be constructed

[I] and so, (4) is satisfied by the observations To show that any weak solution

to (4) is pathwise unique, we will need the following lemmas.

SLemma 1. Let
p At,=) -°ex¢fo 8si). - ft 2()ds)

and

g(t"x) - fAP(t XW) d , W)

Then

(a) UW {x: sup g(t,x)< ")= 1
O<t<l
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and

(b) P{x: inf g(t,x) > 01 1
O <t< 1

where jjis Wiener measure on C[0,1].

Proof: Recall that

*PIW: 0f O ()ds <o1l

and for each such w, the process

is a (right) continuous mnartingale. Consequently, {g(t,W(W)),FW}~ is a right

continuous martingale. For let X(W) be a bounded F W-measurable random variable,
s

s8< t.

Then

= JC X(x) g(t,x) dlpW(x)

= fi (fCX(x)p(t,x,^) %I4(x)] dP(W)

= f- [fCA(x)p(s,x,W") d~j.W(x)] dP(W^)

IC X(x) g(s,x) px)

from which we obtain

Ep~g(t,W)JFW) g(s,W) - w a.s.

sW

Moreover, since the family of sub-a-algebra, {F; 0 < s < 11 is continuous, and
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' p(g(t,w)) 1, 0 < t < 1,

it follows that {g(t,W), F W has a right continuous version [Thm. 3.1, 71.
t

Thus, we conclude that

SP{- sup g(tW()) < ®} - 1
O<t<l

since P{w: sup g(tW(W)) > X} < 1/A
o<t<l

for X > 0. This gives (a).

For (b), note that g(t,x) is the Radon-Nikodym derivative, X (t,x)

where py is the measure induced on C[0,11 by the observations process, y.

Since Vy.'11W' the proof is analogous to Lemma 6.5 (7 ].

Lemma 2. Let

ct(t,x) f fj' ()dsP(t,x,U*) dP(ci).sI
Then

4w {X: sup a(t,x) <c}-1
O<t<l

Proof: The process

{M(tW(W)), W} is a right continuous martingale-and for 0<t<1,

E ct'tw)). = W~0 8(ds) dP(W^).

Lemma 3. Let

2
m(t,x) = fA (at(^)I °p(t,x,W) dP(w^).

Then

Ow {x: f 1 m(t,x)dt < }=
0



Proof: Observe that

.. ~ [f1 m(t,W(w))dt] dP(w) = 101 [SI W(w) 2 dP( ))dt <

We return to the problem of comparing two weak solutions &0' &1 of (4),

assuming that C09 El are both defined on the space (0,F,P). Moreover, we may

assume that p V& are each absolutely continuous with respect to Wiener measure.

The proof of Proposition 1 [9 ] remains valid with respect to the restricted class

of solutions which satisfy the condition

r1 2
P[ (Y(t,E)) dt < j 1.

See, in particular, pg. 161 (9 ] From Lemnas 1,3, it follows that ji 0 V

are equivalent to Wiener measure since

P W f{X: fO(y(t,x)) 2 dt < 1}:

Thus, for 1 =0,, we conclude that

sup g(t, i(w)) <
O<t<l

inf g(t, iM)) > 0

O<t<l

sup <(t ( <
O<t<l

* and Sm(t, i(w))dt < w - a.s.
'; 0



Theorem 1. If t$tare weak solutions of (4~), then

sup I 0(t,W) - 1 twj=0 P-a.s.
0<t<1

Proof. On [0,1] x c[o,i), define

L(t,w) = yt 0 )- y(tE 1% dt- 1

(F -0) 1,g1 )AI 0

Then

(6) (tw) 2 < Ic(w)[(f(t, 0) - (tE1 ))2 + (r(t ,t1) )2 g(t,& 0) g~ t

where K(w) > max2 (inf(g(t,E0)2 inf(g(t, 0))
2  inf(g(t,t1) /

For 0 < u < 1, we write

0

+f (r~t,~))2 .j A



and because ex is convex, it follows for all w, t, that

(8) Ip(t,E0,W) - p(tE 1,)l

1 ^A ^~AI ft

_" IP(t,E o, ) + p(t, 'E l" f s a d( (-lm

^ I fo Es( ) ( )0

1 Ip(t,E 0 ,W) + P(t,ll)II f 0, t )L(sw)ds

2 0

Applying H8lder's inequality to the last integral term in (8), and bringing

out (fotLMs,) 2ds)/, yields

(9) f u M~t,)dt < K()fu [fo t (L(sw))2 ds] " *(t,,)dt - w a.s.

0 0 0

where

Cp(t,W) (f Iat(^)it pt, 0 ,)+p(t,, (f 2^ 1/2 2
^ Wf 2 s(w)ds) dP

2 
0

[f A t (^)P(t,El a})& ]

f ( P(t' 0,')+P(t',l';) ft 2 / p(A 2
2 f 2 (w)ds) d,()]

By showing that (t,w) is an integrable function of t -W a.s., one may then

iterate (9) and conclude that for 0 < u < 1,

f (L(t,w)) 2dt : 0 w- a.s.

0

Hence sup I10 (t,)) - l(tW)I
O<t<l

< dt 0 W - a.s.
0
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and we have established path-wise uniqueness for weak solutions of (4).

To see that *(t,w) is integrable in t, w- a.s, apply H81der's inequality

to the first term to obtain,

2 Os 12

2

(f f2t (p' )+P(t dP*w

fn 2

- f I8t(w)I (p(t, o w)+P(t,El,j )dP())

2

(uf [ f 2(W)ds ] I, C()P(t,& ,A)t ) dP(w'))

* 1 A(p(tt 0°i)+p(t, 1 w) )

(11) sup [ fl (W)ds. 2 dP(
O<t<l 0

Integrating this product over t gives

(11) sup f 1 ol2( )ds]' 2ON
O<t<l & o s0

f u f 1 B2( ) p(t ,Eo ,; 
+p % [l

f [ f s w)+P(t.w) dP(w) dt. < w- a.s.

0~ 2

by Lemmas 2,3.

The second term of i(t,w) is handled analogously using 
Lemmas 1,2,3.

This completes the proof.
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Thus, the observations process {yt O< t<1, is the (unique) strong solu-

tion satisfying (4) under the restriction that

P(O y(t,t)2dt<co) = 1.

Final Remarks.

Let us rewrite equation (2) as

(12) v = (I-N)y , where N is a non-linear operator from C[0,1;py] into

C[0,1;p,]. Under assumptions (a) and (b) we have shown that an inverse operator

(I + N) exists such that P - a.s.

A

(13) y = (I+ N)

Moreover, if wt : C[O,I] C[0,I] denotes the truncation operator defined by

(14) (r tx)(s) = 0<-s<t

0 , otherwise

then

(15) (l+N)(t V) = 7 , that is, the operator (I+N) is causal.

Our results in this paper suggest the investigation of causal-invertibility

of non-linear causal operators on abstract Wiener Spaces (in the sense of Gross)

using methods of stochastic integration and martingales. Such an investigation

would also be of importance in the theory of stochastic stability of feedback

systems.
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